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genus g, embedded in the hypercubic lattice. Then I prove that far all h 3 0  and g*O there 
exists a constant c,>O in two dimensions such that O(e-'.""s"l')p;',osr,,(h+l,O)s 
O(nh)pr,o,  and there exist constants k,>O and k , > O  such that in three and more 
dimensions O(e"+8")')p;',os r.(h + I ,  g ) ~ O ( e k , " " * " " ) p ~ , ~ ,  where only k ,  is dependent 
on h and g, and where fl,,o is the growth con~tant  of sm( l ,O) .  In addition, if it is assumed 
that s . , (h ,g ) -C(h ,g )n .*r . f l ; ' , , ,  then I prove that +h+,,0=4,,0-h in twodimensions,and 
that +,,+, ss 4,,,-2h -4g in three and more dimensions. 

1. Introduction 

Surfaces are interesting objects which appear in many different areas of physics, 
chemistry and mathematics. In quantum field theory they appear in the random surface 
representation of lattice gauge theories (De Wit and 't Hooft 1977, Frohlich 1980, 
Eguchi and Kawai 1982, Kazakov 1983). Interfaces and domain walls are often 
modelled by surfaces (Binder 1979, Privman and SvrakiC 1988), as are membrane-like 
polymer networks (Maritan and Stella 1984, Kardar and Nelson 1988). More recently, 
the interest in the properties of vesicles has sparked a renewed interest in surfaces 
(Fisher et a1 1991, Banavar eta1 1991, Mutz and Bensimon 1991). Vesicles are naturally 
modeiied as ciosed surfaces with a fixed voiume and a fixed surface area. 

We start with the definition of a surface before we consider some previous results 
and set out the aims of this paper. Let 3'' be the d-dimensional hypercubic lattice. 
Let the set of d independent orthogonal unit vectors with endpoints in Zd be 

(&(e,)  = S,, if X,(e,) is the j t h  Cartesian component of the vector e!). Any uertex 
~ € 3 ~  can be represented by a d-tuple ( X , ( u ) ,  X , ( u ) , .  . . , X , ( u ) ) .  An edge with 

U +  e,. Similarly, aploquette is a unit square with vertices in Zd which one can represent 
by the triple (U, e$, e,) if it has vertices U, u + e j ,  u+e ,  and u+e;+ej.  Two plaquettes 
are joined if they share an edge, and two plaquettes are connected if they are elements 
in a sequence of plaquettes such that neighbouring pairs are joined. A vertex in a set 
of plaquettes which is pairwise connected is common if the plaquettes incident on it 

such that (i) every edge in the set is incident on either one or two plaquettes, (ii) is 
pairwise connected, and (iii) has only common vertices. The edges which are incident 
on only one plaquette each form the boundary of the surface. If the surface has no 
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boundary, then it is closed. The boundary is not necessarily connected, but may consist 
of several components which are called boundary componenrs. 

Let Y , , ( h )  be the set of all orientable surfaces in d dimensions with h boundary 
components consisting of n plaquettes, and let Yn=Uh=,Yf i (h) .  Let s , ( h )  be the 
cardinality of Yn(h) and let s. =IhT, s , (h ) .  In this paper I consider the set Y n ( h ,  g )  
of orientable surfaces in d dimensions with h boundary components and genus g. 
Then YRP,!h) =I -gau 1 .Yz(h: ,p). The Cardinality of .Yfi(h, g )  1s represented by s,(h, g). !! 
was shown that limn+- s!,'" = p, limn+- s , (h) ' /"  = p h  and that limn-- s,( h, g)"" = 
(Janse van Rensburg and Whittington 1989, 1990, hereafter referred to as JRWI and 
JRWZ). It was also shown that ph is independent of h and that ph,g is independent of 
h and of g. 

The analogous number to s,(h, g )  for the self-avoiding walk is c, (the number 
of self-avoiding walks in the hypercubic lattice, rooted at the origin), which has been 
the subject of numerous investigations. Hammersley and Morton (1954) proved the 
existence of a connective constant K, such that limn+m c i f *  = e" (e" is also called 
the growth consfant). c, is a submultiplicative function of n, i.e. c,c, 3 cn+,,,. Con- 
sequently, by the theory of subadditive functions, one notes that c. a pn = e x n  (Hille 
1948). A remarkable effort by Hammersley and Welsh (1962) established that p" 6 c, s 
p"O(eyfi). These bounds were improved by Kesten (1964). It is widely believed that 
c, deviates from exponentiai growth by at  most a power of n. i n  more than four 
dimensions this has now been proven to be indeed the case (Hara and Slade 1991). 
In four and less dimensions this fact has not been established. 

In analogy to c, I shall calculate bounds on s,(h, g ) .  These new bounds are the 
main new results in this paper. The bounds are consequences of two new constructions, 
unfolding, and a new submultiplicative inequality involving s.( 1.0) (propositions 2.3 
and 3.1). In particular, I found a positive constant c6 such that in two dimensions 
(theorem 3.4(ii) and (iii)) 
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)P  l o  6 s. ( h  + 1,O) O( n )P  ;.n V h 3 O  (1.1) O(e-'.""8 "12 

and in three and more dimensions I prove that there exists positive constants k,  
(dependent only on h and g) and k, such that (theorems 3.9(iii) and 3.10) 
o(e-".""q,R:,,,s s , (h  + 1, g) zs O(ek3(h.8"'"' "'2u3:" r r  I." W h a O  and gaO; (12) 

It is usually assumed (in analogy with walks and animals, and on the basis of 
numerical results) that the corrections to the exponential behaviour of s , ( h , g )  (or 
s , ( h ) )  is dominated by a power law. That is, s , ( h )  - Chn-'r@;. The exponents +,, were 
found to obey the following relations in JRWI and J R W Z :  in two dimensions 

+h 3 $ h + ,  and 4, - h 2 $h+,  3 +I - i h  W h a l  (1.3) 

$ h 3 $ h + 1 2 $ l - 2 h  V h a l .  (1.4) 
In this paper I assume that s,(h,g)-Ch,,n-*h..P;.o (where + h . O = $ h  in the two- 
dimensional case). I improve (1.3) to the equaliry (theorem 3.5(i)) 

+h+i .o= m1,n-h V h 3 O  (1.5) 

and in three and more dimensions I prove a relation between exponents (which was 
given without proof in JRWZ): 

+ h - + , g - v 3  +h+l .g  Z3 $l.0-2h-4g V h a O  and g 3 0  (1.6) 

and in three and more dimensions 

where p and Y are any integers greater or equal to zero (theorem 3.14). 
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Often, surfaces are studied in the mean field approximation (Frohlich 1985) which 
provides ‘exact’ values of the critical exponents above the critical dimension, which 
is eight. In lower dimensions, mean field theory is inadequate, and one has to resort 
to other methods to derive some of the properties of surfaces. There is strong evidence 
(numerical and rigorous) that surfaces collapse to branched polymers in the scaling 
limit (Bovier et al 1984, Frohlich 1985, O’Connell et a1 1991). The values one would 
expect for the exponent $,,n are therefore the tree exponents. In particular, one can 
find ‘exact’ values for $,,o from the dimensional reduction of Parisi and Sourlas (1981) 
in two dimensions 1) and in three dimensions ($,,,=$). In higher dimensions 
one can use Flory’s argument (Isaacson and Lubensky 1980) to guess that increases 
with increasing dimension to its mean field value ( 2 )  in eight dimensions. In the previous 
works (JRWI and JRWZ), and in this paper, a combinatorial approach to surfaces is 
developed. These methods are well established for walks (Hammersley 1957, 1961a, 
1961b. 1962, Hammersley and Welsh 1962) and can naturally be applied to surfaces. 

This paper is organized in the following way: in section 2 I consider the unfolding 
of surfaces, a construction which will prove very useful in other applications later in 
this work. I also review the basic definitions, and recall some useful results from JRWI  

and JRWZ. In section 3 I consider surgery on surfaces. In particular, I prove a ‘submulti- 
plicative’ property for surfaces (proposition 3.1). In section 3.1 I study surfaces in two 
dimensions. I recall some useful results from JRWI and tighten a bound first proved 
in JRWI.  Together with unfolding and the submultiplicative property, these propositions 
reveal interesting bounds on s , (h,  0) in two dimensions. In section 3.2 I switch my 
attention to surfaces in three and more dimensions. I generalize some inequalities in 
JRWI and IRWZ and study the properties of s . ( h , g )  in light of unfolding and the 
submultiplicative property. Section 4 is given to some conclusions and speculations 
about future directions. 

2. Unfolded surfaces 

The (unique) top vertex and the (unique) bottom vertex of a surface U €  9’” are found 
by a lexicographic ordering of all the vertices in the surface. To find the top edge and 
the bottom edge of U one must first consider the following definition: an edge ( 1 ,  e , )  
is perpendicular to a second edge ( t ‘ ,  e,) if e , .  e, = 0. Since the top and bottom vertices 
of U are incident on at least one plaquette each, there must be at least two edges 
incident on the top vertex (and on the bottom vertex). Without loss of generality, 
consider only the top vertex, 1. Let the set of edges incident on t be { ( t ,  - e j , ) } ,E , ,  where 
m 2 2 .  (The minus sign appears from the definition of the top vertex.) Let k =  
min,{bl k # 1). Since m 2 2 there is always such a k. Then the top edge of U is ( 1 .  - e k ) .  
It is perpendicular to ( t ,  - e , ) .  The bottom edge is found in a similar way. Let the 
boundary of U be Ju. Let H , ( z ) = { x ~ 9 1 ~ ~ X , ( ~ - z ) = X ; ( x - z ) }  be a hyperplane 
containing the point z. 

Definition 2.1. A surface U is said to be top unfolded if its top edge is in Ju or if there 
exists a hyperplane H , ( t )  (with i, j >  1) containing the top vertex t such that a reflection 
of U through this hyperplane, U’, has its top edge in au’. If the bottom edge is in Ju, 
or if there exists a hyperplane H , ( b )  (with i , j >  1) containing the bottom vertex b 
such that a reflection of U through this hyperplane, U”, has its bottom edge in Ju”, 
then it is bottom unfolded. A surface which is both top and bottom unfolded is said to 
be doubly unfolded. 
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Let the set of all top unfolded surfaces with n plaquettes be Y: ,  the set of all 
bottom unfolded surfaces with n plaquettes be Yp", and the set of doubly unfolded 
surfaces with n plaquettes be Y:(=Ypb n 9:). Let the cardinalities of these sets be s:, 
s: and s: respectively. 1 shall study surfaces with a fixed number of boundary 
components, h, and a fixed genus g. Let the set of all surfaces with h boundary 
components, genus g,  and n plaquettes be Y n ( h ,  g ) .  1 extend the notation to indicate 
the set of all top unfolded surfaces with h boundary components, genus g, and n 
plaquettes by Y : ( h , . g ) .  This set has cardinality sb(h,  8). Similar notation applies to 
bottom unfolded surfaces and to doubly unfolded surfaces. By symmetry, s : ( h ,  g )  = 
s : ( h , g ) .  In any equation one can replace s: by s:, or s : ( h , g )  by s : ( h , g ) .  Define 
s z  = s: = s. and s z ( h ,  g )  = sL(h, g )  = s : (h ,  g ) .  In two dimensions, every surface is 
doubly unfolded, and there are n o  surfaces with genus bigger than zero (i.e. s,( h, g )  = 0 
if d = 2 and g > 0). The following inequalities are easily proven by appending plaquettes 
onto the top edge (or bottom edge) of an unfolded surface: 

Proposifion 2.2. Let d B 2. Then 

h 

(i) s X h ,  g )  s s , + , ( h ,  g )  
(4 s X h , g ) S C + , ( h + L g )  
(iii) s r ( h ,  g ) S  s :+ , (h ,  g +  1) 

where C and K are constants independent of n, and where one can also replace U 
by *. 

Let 1x1 be the largest integer smaller or equal to x, and let [x l  be the smallest 
integer larger or equal to x. In more than two dimensions, one finds the following 
relations between surfaces and unfolded surfaces: 

Proposition 2.3. Let d 2 3. Then there exist a map from .Ym into 9: or 9': which is at 
most 2nr'ogn/log41 to 1, and there exist a map from 9" to 9'; which is at most 
4n2r1"K n/l"K41 to 1. In addition, if ~ € 9 ' ~  is mapped onto U', and U has h boundary 
components and genus g, then U' has at most h boundary components and has genus 
g. Consequently, 

(i) s ~ s ~ n ' l " ~ ~ / ~ ~ 8 4 1  " 
(ii) s, s4n2rl~gn/l~g4iS* 

S " ,  

n ,  

(iii) s , (h,  g )  ~ 2 n r " 8 " " o g 4 ' h ~ ~ + , h ~ , , I C ( h ,  g ) ,  and 
(iv) s.(h,  g )  ~ 4 n 2 r ' o K n ~ ' o g 4 ' h 2 ~ ~ + 2 ~ h ~ , ~ C ( h ,  g ) ,  

where C is a constant independent of n. 

Proof: Let U €  9,. Suppose that U is not top unfolded. Let the top edge of u be (f, - e k ) ,  
then (f, - e x ) $ J u ,  Starting at the top edge, mark the shortest sequence of plaquettes, 
successively joined, which connects the top edge to an edge in Ju. Let this set of 
plaquettes be p. p is a subsurface, and define d = u - p .  Then U' has its top edge in 
Ju', Reflect the surface p through the midpoint of the top edge, ( f  - e k ) / 2 ,  and consider 
the surface u ' u p ' ,  where p' is the reflected image of p. The maximum number of 
plaquettes in p is [n/41. To see this, delete first one of the plaquettes incident on the 
top edge of U, Let p be the number of plaquettes in p after this plaquette is deleted. 
Observe that the hypercubic lattice has girth four, and that alternative sets of plaquettes 
adjacent to p can instead be identified. A fourth set of plaquettes adjacent to one of 
these sets can also be identified. By definition, each one of these sets has at least p 
plaquettes. Therefore, 4p s n - 1. Hence, p has at most ( n  - 1)/4+ 1 plaquettes. The 
number of plaquettes in p must be an integer, therefore, the maximum number is 
bounded by ( ( n  - 1)/4+ 11 = [n/41 (see figure 1). 
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t 

Figure 1. Unfolding of a surface. p. the shaded Section ofthe surface, is reflected through 
the top edge. 

The surface u'u p' has a new top edge, which is in p'. The bottom edge of p' is 
(1,  - e k ) ,  by the construction. Since the bottom edge of p'is the only connection between 
U' and p', p' is bottom unfolded. Identify a new top edge on p', and repeat the 
construction in the paragraph above. Look for the smallest subsurface p' which connects 
the top edge to the boundary. If p" contains the bottom edge of p'. then it must have 
at least n - [n/41 plaquettes, this is a contradiction (since it contains more than n/2 
plaquettes). Thus, p " c  p',  and p" cannot contain the plaquette incident on the bottom 
edge of p'. The maximum number of plaquettes in p" is I ln /4 ]  1. To see this, note 
that p" does not contain the plaquette incident on  the bottom edge of p'. Delete one 
plaquette incident on the top edge of p'. and suppose that p" has p +  1 plaquettes. 
Then by the arguments in the previous paragraphs, 4p s [n/41- 2. But the maximum 
number of plaquettes in p" is p + l ,  an integer. Thus, p + l <  L[n/41/4+1/2J s 
[ !~/4! /4] .  

Suppose that after m applicatons of this construction the surface is top unfolded 
(it has its top edge on its boundary). At the mth application, the number of plaquettes 
involved in the reflection is at most (as is easily seen by performing an  induction) 
r l  t . . L  n/4]/4 ...J /4]/4] ( m  divisions by 4). If the number of plaquettes at the 
(m + 1)th application is less than 1, then the surface must be top unfolded at the mth 
application. Hence, [l.. . [n/4] /4 . .  . /41/41= 1 (where there are m divisions by 4). 
That is, m is at most the biggest integer such that n 2 4", or m C log nllog 4. Let the 
unfolded surface be U". The unfolded surface U" is obtained by applying the construc- 
tion above at most [log n/log 41 times to the surface. At the ith unfolding, the top 
edge can be found in at most 1. . . Ln/4J/4.. . J /41  S [n/4'1 locations ( i  divisions by 
4) since there are at most one top edge for every plaquette. Thus, the unfolding maps 
at most z, =11\2f""""' In/&] surfaces to U". But z,<II!?~'"/'og41 [ n (  ~ / n  + 4 - ' ) ] ~  

2 n  iiop n j iog4j  (Gradshteyn and Ryzhik 1965). Therefore, iiog n j iosai  np._, + 4-;) 
, m ~ 2 n r ' O K " / k 3 4 1  s., which is the inequality claimed in (i). The second inequality is 
found by unfolding to the top and to the bottom. 

From a topological point of view an application of the construction consists of 
making two cuts starting at  the endpoints of the top edge and ending on  either one 
or two boundary components. The segment between the cuts is then folded out. If 
both cuts terminate on the same boundary component, then the surface has the same 
topology after application of the construction. If they end on two different components, 
then the components coalesce when one folds the segment out; this reduces the number 
of boundary components by 1. The genus of the surface cannot be changed; to do 
that, one must cut the surface along a 1-cycle which is not a boundary (in the homology 
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sense). Therefore, if u E Y , , ( h , g ) ,  then U" is a surface in the set U:=, Y n ( i , g ) ,  Thus 
s,(h, g ) < 2 n r ' o g n ' ' a g 4 1  X?=l s : ( i ,  g ) .  If one appliesthe results from proposition 2.2, then 
the inequality claimed in (iii) is found. The last inequality is found by unfolding the 
surfaces to the top and to the bottom. 

A top unfolded surface can be concatenated with a bottom unfolded surface if 
their top and bottom edges (respectively) have the same orientation. This gives the 
ioiiowing sei of usefui inequaiiiies: 

Proposition 2.4. Let d a 2 .  By concatenating surfaces one deduces that 

E J Janse van Rensburg 

(i) s : s k s ( d - l ) s n + m  
(ii) Xkz1 X . : = o s , ( h ' , g ' ) s L ( h - h ' ,  g - g ' ) s ( d  - l ) s , , + m ( h - l , g )  
(iii) s:s*, s ( d  - l ) s : + ,  and 
(iv) X k ~ , E ~ . = o s ~ ( h ' , g ' ) s * , ( h - h ' , g - g ' ) s ( d - l ) s : + , ( h - 1 , g ) .  

Prooj If d = 2, then note that sL(h, 0) = sb(h, 0 )  = s:(h,  0)  = s.(h, 0). Concatenate sur- 
faces in pairs to find each of the resulting inequalities. If d > 3 then by symmetry 
s L ( h , g ) = s b ( h , g ) .  Let u , ~ Y ; ( h ~ , g , )  and cr2cYk(h2,g2).  If the top edge of U, has 
the same orientation as the bottom edge of U ? ,  then one can concatenate them to find 
a new surface u10u2 with n + m  plaquettes, h l + h , - l  boundary components, and 

edgeofu2is  (b,  e l ) .  Considerthe hyperplane H , , ( b ) = ( ~ E ~ ~ ( X ~ ( x - b ) = X , ( x - b ) } ,  
which contains b. If one reflects u2 through H , , ( b ) ,  then the new surface will still have 
bottom vertex b, but the bottom edge is now (b, e*).  This reflection maps all the surfaces 
u2 into a set of surfaces which has bottom edge (h,  e x ) .  The reflection is at most ( d  - 1 )  
to 1 .  

Remarks. If one sums proposition 2.4(ii) over g,  then E",;=', s , ( h ' , * ) s : ( h -  h', *)< 
( d  - l ) s n + M ( h  - 1, *), where s.(h, *) = X:=,, s.( h, g )  ( = s , ( h ) ) .  Alternatively, if one sums 
proposition 2.4(ii) over h, then Ei.=os,(*,  g')sL(*,g-g')<(d-l)s,+,(*, g ) ,  where 
s,(*, g )  =XY=:=, s.(h, g ) .  Similar inequalities can be found by summing proposition 
2.4(iv) over h or g. If one sums proposition 2.4(ii) over both h and g, then one obtains 
proposition 2.4(i), since s,(*, *) = s,. Similarly, one can get proposition 2.4(iii) from 

the following useful results: 

Proposition 2.5. (JRWI and JRWZ) Let d 2 2. Then there exist constant, positive integers 
A, H and G such that 

~ e n i i s  ,oi + g 2 .  Suppose !herefore !ha! !he top edge of T; is ( t ,  -ek), and that the bn!!nm 

-----":A:-- 1 AI : . . \  I.. -..-- :-- -..̂ - h-+h L - - A  I I ---"I..rl- &h:" ma.+:-- h.. ..,.&-m yuryuar,,u,r L.',,", uy Jurllrrlrrrg U Y C ,  VUUl  n a11u 8.  1 buu+,"u= LlllJ JCCLlUll uy "UL"1E. 

(i) s , (h,  g )  s s,+,(h, g )  (and consequently s, < s,,+,), 
(4 s , ( h , g ) < s , + , ( h + l , g ) ,  and 
(iii) s . ( h , g ) S s , + , ( h , g + l ) .  

Proposition 2.6. (Durhuus et a/  1983, JRWI) Let d 3 2. Then there exists a finite, positive 
constant K such that s. < K". 

3. Surgery on surfaces 

Surgery on surfaces involves the cutting away of segments of a surface in order to 
change the number of boundary components, or the genus, or to separate the surface 
into more than one segment. The objective is to relate s , ( h , g )  to s , ( h - 1 ,  g )  or 
s , ( h , g -  1) in very much the same fashion as in proposition 2.2. In proposition 2.4 it 
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Figure 2. Towards a submultiplicative inequality for discs. 

in the same way, this introduces a factor of 2 in our results). Suppose that ti < m / 2  
for all i. Then n - 1 = Z4 t j  < 2 m  6 n. This is a contradiction, unless 2m = n (and 
lj < m / 2 ) .  Hence, X4 ti = 2 m  - 1 .  The maximum value of X4 li (under our assumptions) 
is attained when ti = 6, Vi and j .  If m is even, then f f  = m / 2 -  1. Hence X4 fi  = 2 m  -4. 
This is a contradiction. If m is odd, then ti = m / 2 - 4 .  Hence X4 1; = 2 m  -2, another 
contradiction. Hence, there exists at least one i such that ti 2 m / 2 .  That is q = ti [ m / 3  1. 

If q 6 m then the process is finished (use the construction on partitioning a disc 
with two split-plaquettes). So suppose that q > m, and without loss of generality, 
suppose that q = til, for some i , .  Consider now the subsurface consisting of I,, plaquettes, 
which is connected to the rest of the surface at the split-plaquette p .  If there are no 

using the construction above. Otherwise, suppose that there are other split-plaquettes 
in  the surface, and suppose that p,  is one of these. I show now that one can either 
separate a segment of size between ( m / 3 1  and m from U, or one can find a subsurface 
connected to the rest of the surface at exactly one split-plaquette and which contains 
I, plaquettes, such that I;,> f j 2>  rm/31.  If this construction is iterated, then one must 
finally find a subsurface of the desired size. Incident on p !  are (at most) four segments 
of U, one which contains p (the first split-plaquette considered). Let this piece contain 
U: plaquettes, and let the other pieces contain U:, 1 <is 3, plaquettes. There are two 
cases: case 1 which has 1’ uj 2 m, or case 2 which has Z’ U: < m. In case 1 there exists 
an i such that U ; >  [ m / 3 1 .  So let ti,= U:, and observe that f j , >  lj,. Under case 2 there 
are two subcases: either one has Z’u la  [ m / 3 1 - 1 ,  or X’ U ; <  [ m / 3 1 - 1 .  In the first 
subcase observe that adding the split-plaquette p ,  to the three segments results in a 
connected subset of U of size at least [ m / 3 1 ,  and we are done. In the second subcase 
one must add plaquettes beyond p,  until the size is more or equal to [ m / 3 1 .  The 
construction is similar to separating the surface between p,  and p .  There is one 
difference: some of the plaquettes added could be split-plaquettes which may increase 
the size of the subsurface from below [ m i 3 1  to above m. If this happens, let p2 be 

ether sp!i!-p!aqL!e!!es ifi !he ..bs.rfm, !h$E one G%fi pafiition m p!aquettes from it 
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that split-plaquette. Obviously, p z # p ;  (if p 2 = p ,  then y =  f , , <  [ m / 3 1 ,  which is a 
contradiction). Incident on p2 are at most 4 segments of the surface, one of which 
contains p. Let the other pieces incident on p1 be U:, where 1 s is 3 (If p ,  is not on 
the same segment as p,  then it is contained in one of these segments.) If p ,  is on the 
same segment as p (see figure 2 ) ,  then t j ,  > ti,= X' U;+ 1 > m - [ m / 3 1 a  [ m / 3 1 .  If p ,  is 
in another segment, say (without loss of generality), in U;, then X2 U: + 1 > m - rm/31=  
L2m/3].  To satisfy this constraint, at least one of U; and U; must be greater or equal 
to [ m / 3 1 .  Choose th to be this segment. Then t i ,>  t t 2 >  [ m / 3 1 .  

Once a subsurface with q plaquettes has been partitioned from w, where [ m / 3 1  S q < 
m, one can put m"' = m - y and consider the original surface minus the partitioned 
segment. If the construction is repeated, then one can partition a second subsurface 
with at least rm"'/31 (and at most m")) plaquettes. This process stops when one has 
partitioned out in total m plaquettes. The maximum number of partitionings occur 
when one separates out the minimum number of plaquettes at every stage. At the kth 
application one separates out r 12 . . . 2  12m/3]  . . . / 3 ]  / 3 ]  plaquettes, where there are 
(k-1)  multiplications by 2 and k divisions by 3. Hence, the partitioning stops when 
[l.. . 2 1 2 m / 3 ] / 3 ]  . . . / 3 ] / 3 ]  = 1 after k -  1 applications. Then one can easily check 
that m 3 2(3/2)' ,  or k <  log m / l o g ( 3 / 2 ) .  The maximum number of ways that one can 
attempt to put anyone of the pieces back in the surface is bounded by a,nm, where 
a, is a positive constant. In two dimensions, concatenate the segments into a surface 
with m plaquettes, using proposition 2.4. By the arguments in proposition 2.3 one can 
partition this surface into k pieces in at most m k  ways. Hence, if one put m = i and 
n - m = j ,  and absorbs the extra factor of 2 (which arises because m and n - m are 
treated in the same way) into a,, then ~ ~ + ~ ( l , O ) < ( a , i ~ j ) ' ~ ~ ~ / ' ~ ~ ~ ~ / ~ '  sr(l,O)s,(l,O). This 
is better than the inequality claimed in two dimensions. In three and higher dimensions 
one cannot concatenate the pieces as claimed. Unfold them instead, using proposition 
2.3, and concatenate them using proposition 2.4. The result is ~ < + ~ ( l ,  0)s 

s j (  1, O)sj( l,O), where U ,  is a positive constant (which has 
absorbed the extra factor of 2 arising from the similiar treatment given to n and n - m ) .  
This is better than the inequality claimed in three and more dimensions. 

..2+2[log '/lop 41 log i/ log(3/2J 
(all1 1 

3.1. Surgery in two dimensions 

A surface in two dimensions always has genus zero; in this subsection we ignore the 
genus of the surfaces and concentrate on the number of boundary components. In 
mwi ,  a stronger result than proposition 2.2(ii) was proven in two dimensions. I begin 
by quoting that result: 

Proposition 3.2. (inwi) Let d =2.  Then there exists finite, non-zero constants c,, c ,  
and c2 such that 

This proposition is a pattern theorem for surfaces in two dimensions similar to the 
pattern theorem for walks and animals (Kesten 1963, Madras 1989). Surgery on surfaces 
are performed by cutting between boundary components. 

Proposition 3.3. Let d = 2. Then there exists a finite, positive constant c, such that 

s,, ( h  + 1,O)  s 2ns,+,( h, 0 ) .  
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Proof Let U E  Yn(h, 01, where h 2. Suppose that d u  has one boundary component 
which is also the boundary of a plaquette. Then one can delete this boundary component 
by adding the plaquette to the surface. This construction is a map into Yn+,(h - l , O ) ,  
and is at most n to 1, since one can find at most n locations on .Yn+,(h - 1 , O )  to 
construct a new boundary component. If au has no components which are boundaries 
of plaquettes, then argue as follows: Let 9 be the surface in Yq(l, 0) which has a 
square as boundary. Let x and y be points on different boundary components of U, 

and select x and y to be only the midpoints of edges on the boundary components. 
Connect x to y by a curve which passes through the midpoints of every plaquette it 
traverses, and which passes from one plaquette to the next only through an edge (and 
not through a vertex). The length of this curve, Cx),, is defined as the number of 
midpoints of plaquettes that it visits. Vary x and y over Ju to find the curve C,  which 
has the minimum length. Let p be the segment of U which consists of the plaquettes 
traversed by C,. p is a linear string of plaquettes with every plaquette having at least 
two edges in dp. To see this, one must show that one does not disconnect U when p 
is deleted. Let the 'plaquette at L' mean 'the plaquette with midpoints z'. Without loss 
of generality, suppose that plaquettes at z -  e, and z have been deleted, and that the 
next plaquette to be deleted is the plaquette at z+e, .  If the surface is disconnected 
when z + e ,  is deleted, then z + 2 e , + e 2  and z+2e,-e2 must be unoccupied, while 
z+2e, is occupied. In that case delete z+e, instead. If this disconnects the surface, 
then z+e,+2e2 and z-e ,+2e2 must be occupied, while z+2e, is occupied. But this 
is not possible; if z-e ,+2e2 is unoccupied, then delete z - e , + e , ,  which will be a 
shorter path to the boundary. Thus, z -e, + 2e2 must be occupied. Therefore, one can 
delete z + e2 and then z + e, + ez on the boundary, without disconnecting U. Therefore, 
p is a linear string of plaquettes. Suppose that p has j plaquettes, and define U'=  U - p  
with n - j  plaquettes, and h - 1 boundary components. Concatenate U'@ 9 O p  = T, 
where T has h - 1 boundary components and n + 9 plaquettes. Since p is linear, and 
concatenated onto the top edge of 9, one can easily identify it. This construction is 
into Yntq(h - 1) and is at most n t o  1, since one can identify p and attempt to put it 
back with U' in a t  most n ways. Therefore 

E J Janse van Rensburg 

s,( h, 0) S ns,,, (h - 1,O) + ns.+,( h - 1,O) 

and by proposition 2.2(i), the inequality follows. 

Remarks. By proposition 2.4(i) and (ii), in two dimensions, s.s, s sHtm. Together with 
propositon 2.6 this implies that sup.,, si/'' =limn-* s;'" = p, where p is a finite, positive 
constant (Hille 1948). Similarly, & ( I ,  O)s,(l, 0 ) s  s,+,(l, 0) so that sup.,, sn(l,O)"" = 
limn+msn(l,O)'/" where p,,o is a finite, positive constant. In addition, by 
propositions 2.2(ii), 2.6 and 3.3 it is obvious that s.-hc(l, O ) s s , ( h  + 1,O)s 
[U:=, 2 ( n + ( i - l ) ~ ~ ) ] ~ . + ~ ~ , ( l , O ) .  If one takes the ( l /n ) th  power, and let n+w, 
then limn-- s,,(h, 0)"" =pi,,. Also, it is easily calculated that s,(h, 0) s 
[2plio(n+ hc,)lh-'p;,,. A lower bound on s.(h, 0) can be calculated from propositions 
2.5 and 3.1, using the theory on subadditive functions by Hammersley (1962). (If 
proposition 3.2 instead of 2.5 is used, then a stronger inequality results). Lastly, a 
consequence of proposition 3.2 is that pl,,<p ( JRWI) .  I take these results together in 
theorem 3.4: 

Theorem 3.4. Let d = 2. Then there exists finite, positive constants p, p,.o and ci, O S  is 6 
such that 

(i) sup,,, si/" = limn-- s;/" = p, 
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(ii) limn-m s.(h,O)"" =& V h  3 1 and s , (h+l ,  0 ) s [ 2 P ~ o ( n + ( h + l ) c , ) l h ~ ~ . o ,  
(iii) s.+hq(h+lrO)zcq(c;h/h!)(  Ln/c,,] -h)hnP'exp(-c6(log n)2)Py,n, provided 

that Ln/coJ > h, and 
(iv) Pl,0<P. 

Boot  (i), (ii) and (iv) are obvious or already proven. To see (iii), consider proposition 
3.1(i), which is of the form 

s,+, (1,O) s g( n + m b. (1, O b m  (1,O) 

(a"(n+ m))1110g~n+m!/logO12!l 
and g(n + m) is given by 

Then, 
m 

,- 
(9/(2 I O & / ~ ) ) )  J - (log x)2/x2 dx. 

1"-312 

The solution to this integral can be found in Gradshteyn and Ryznik (1965). On 
simplification, one finds that 

sn(l, ())a cqn-5 e-%('oz"!' PY.0 

where c4, c5 and c, are positive constants (as can be checked), and where 1 noted that 
Z n Z Z n - l a n ,  and 3 n - t S 3 n .  Observe now that 

s.+h,.>(h+ 1, O ) 3 ( C T h / h ! ) (  Ln/Col -hIhs.(l, 0) 

when [n/c,J > h (proposition 3.2). 

Numerical simulations (Glaus 1986, 1988, Glaus and Einstein 1987) of surfaces 
suggest the existence of a critical exponent 4 such that s. - c,n-'p" (where a, - f ( n )  
means that an =f(n)[l+o(l)]) .  Assume that s,(h, 0) - c,(h, O)n-"h."/3Y.n. Then one can 
relate $h,O to +,,,,, and find a bound on q5,,o by substituting the assumption into the 
inequalities derived in the propositions above. 
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73eorem 3.5. Let d = 2 .  Suppose that s , ( h , O ) - c , ( h , O ) n ~ m . . n p ; , ~ .  Then 
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(i) ~ h + l . U = $ l . O - h r  

(ii) +,,oaO, and 
(iii) ( 2 p  < c,( 1 , 0 ) /  c7( h + 1,O) < h !( c , p  2")". 

Proof: (i) By propositions 3.2 and 3.3 

Substitute the assumption, divide by p;,o, take logarithms, divide by log n and let 
n + CO. If one keeps in mind that ( y )  - ( a n ) h ,  then one finds that +h+l = + I  - h. 

(ii) Observe that S , , ( I , O ) S ~ ; , ~ ,  this implies that + , 3 0 ,  
(iii) Substitute the assumption into proposition 3.2 and 3.3, with 4h+, = + I  - h, and 

observe that ( r ) > ( m  - h ) h / h ! .  Divide the resulting equation by nh-'I and let n+m. 
This gives the desired results. 

The results = +, - h was also proven for lattice animals, where cycles are 
counted instead of boundary components (Soteros and Whittington 1988). 

3.2. Surgery in more than two dimensions 

In three and higher dimensions there is the possibility that a surface will have genus 
more than zero, in addition to boundary components which may be present. I begin 
by generalizing two constructions in JRWI and JRWZ. 

Proposition 3.6. Let d 2 3,  and suppose that h 3 1 .  Then 

Proof: Consider the shortest connected sequence of plaquettes which originates on 
one boundary component, and terminates on another, in the surface un E 9 , , ( h ,  g ) ,  
where h 3 2.  By the arguments in proposition 2.3 this sequence has (say) j plaquettes, 
where l s j s  [ n / 4 ] .  The maximum number of possible configurations of these j 
plaquettes, which have one boundary component (by the construction), is sj(l, g ' )  
(where O S g ' G g ) .  Therefore, the construction is a map 

which is at most n to 1 .  (To see this, consider a strip of j plaquettes which is being 
moved around the boundary components of surfaces in 9 " - , ( h -  1). If it separates a 
boundary component into two components, then a successful fit is obtained. If j 
plaquettes are involved in a successful fit, then every plaquette in the sequence, except 
perhaps for the first and the last, must have two edges in the boundary. Therefore, the 
maximum number of ways that one can put back the connected strip is bounded 
above by 2 ( n - j + 1 ) / 2 .  This is a maximum if j = 1 . )  Hence, s , ( h , g ) S  
n X,!:?' XE,=o s,(I, g ' ) s , , ( h  - 1 ,  g -E'). 

Proposition 3.7. Let d 3 3 ,  and let g 3 0. Then 
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Prooj Let u w € Y n ( l , g )  where g 3  1. Then U" is homeomorphic to an orientable 
2-manifold with g handles and one boundary component. U" can also be considered 
a cellular complex consisting of plaquettes, edges and vertices. Consider the set V of 
all 1-cycles which are not null-homologous and which has at least one edge in J u n .  
Define the length of a cycle in W to be the number of edges it has not in Ju,,. Let 
C E W be a cycle with minimum length. On either side of C there are strips of plaquettes, 
and which start and terminate in the boundary of U". If one deletes one of these, then 
C becomes a boundary (null-homologous), and the genus of U" will decrease by at 
least one. Let the strip contain j plaquettes. Obviously, j <  [ n / 2 1 ,  since one can always 
elect to delete the plaquettes in the shorter strip along C. The strip which is removed 
has zero genus (to see this, observe that if the strip has a handle, then one can cut 
that instead, removing less plaquettes than j). Moreover, there are now two boundary 
components on the rest of un (this follows from an easy application of the Jordan- 
Brouwer curve theorem (see Greenberg and Harper 1981) to the neighbourhood of 
C), while the strip has only one boundary component. The construction is a map 
Y ~ ( 1 , g ) ~ ~ . ~ 1 ~ 1 1 1 ~ a . . c p ~ , , . Y , , ( 2 , g ' ) x ~ ( l , 0 ) ,  whichisatmost n t o  1 (seeproposi- 
tion 3.6). dence,  s,( I ,  g) S nZ!l(" Z;;=b s.-,(2, g')sj(l, 0), which is the desired 
result. 
Remarks. The existence of growth constants for open surfaces can be proven in an 
elegant fashion. Consider for example proposition 2.3(i) and proposition 2.4(i): 

Consequently, if proposition 2.6 is kept in mind, then there exists a positive constant 
p such that limH-m = p exists (Hammersley 1962). While these inequalities suffice 
to prove the existence of the growth constant, the strongest bound on the approach 
to the limit is found by a concatenation developed in J R W I :  

Proposifion 3.8. (JRWI) Let d 3 3 .  Then there exists a constant k ,  such that 

s,s, s4n rios + w 4 i m r i o s  m/lugdl  together, they give sns, s4nr10gni'og41mriogm1'og41 ' S,+,. 

(i) s.s, s s.+,+~, and 
(ii) sn(h,,g,)s,(h2, g J s s . + , + d h , + h ,  g1+g2). 

Remarks. A simple extension of the theory of subadditive functions, due to Wilker 
and Whittington (1979), when considered with proposition 3.8(i), implies then that 
lim,,-m s i / "  = p exists and s,, s p"'". Similar deductions can be made about discs 
(elements of Yn(1,O)). The existence o f t h e  limit limn-msn(l,O)''" =PI,, follows from 
proposition 3.l(ii) and proposition 2.6 (Hammersley 1962). Here PI.,.  is the growth 
constants for discs, which is presumable different from p (as numerical work seems 
to indicate (Glaus 1986, 1988, Glaus and Einstein 1987)), but a rigorous proof of this 
fact has not yet been found. A lower bound on the rate of convergence to the 
limit can he derived from proposition 3.1, as was done in two dimensions in 
proposition 3.4. An upper bound is found by noting that s n ( l , O ) s m ( l , O ) ~  
4( - 1) iiog m i l o g  41 riog milos  4 I s,+,(l, 0) (which follows from propositions 2.3(iii) and 
2.4(ii)). Unfortunately, the methods here do  no provide a lower bound on the rate of 
convergence of s!/" to p ;  to find such a hound an  inequality like that for discs in 
proposition 3.1 must be proven. These results are taken together in theorem 3.9: 
Theorem 3.9. Let d 3. Then there exists positive constants p, and k,, Os is 7, 
such 

( i )  lim.,,s;'"=p and s.Sp"+'", 
(ii) 1 i m ~ - ~ s ~ ( 1 , 0 ) " "  = P , . ~ ,  
(iii) sn(l,O)S k , n k : e x p ( k , ( l o g n ) 2 ) p ; , , ,  and s n ( l , 0 ) 3  k,n-"exp(-k,(log n ) ' ) x  
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Proof: (i) and (ii) were proven in the above discussion. All that are left are the bounds 
in (iii). 

E J Janse van Rensburg 

First the upper bound: by propositions 2.3(iii) and 2.4(ii) one has 

s.( I ,  O)s,( I ,  0) S 4(d - I)n""g 

q. = S" (1, O)/ ( 2 m  n w= "'lo= 4' ). 

log qn+m >log q. +log qm +log g ( n +  m )  

41m''os m/iog 41s,+, (40) .  

In this inequality, let 

Then 

where 

l O g g ( f l ) = - l o g ( 2 ~ ) - l o g f l l l o g  n/log4]. 

Then, 

(Hammersley 1962). The theorem is proven if one finds an upper bound on log g ( n ) / n  
and a lower bound on the sum. Since logg(n) is negative, an upper bound on 

( l o g ( Z m ) + l o g  m [log m/log 4l) / (m(m+ 1)) 
m 

m=2n 

is desired. This sum is bounded by the integral 
m 

( l o g ( 2 ~ ) / x 2 + l o g  x/x2+ (log ~ / x ) ~ / l o g  4) dx. 
. i n - i  

Observe that the integral is monotonic decreasing with increasing n. An upper bound 
(which is sufficient) is then found by replacing 2n - 1 with n, and evaluating the integral 
(Gradshteyn and Rysnik 1965) to find 

( ( l o g ( 2 m ) + 2 / l o g  4+  1)+ (2/log4+ 1) log n+(log n)'/log 4)/n. 

log n [log n/log41 z (log n)'/[og 4. 

Collecting terms gives 

log ~"(1 .0)  s n log P ~ , ~ +  (2(10g n)')/log 4+  (4+8/log 4) log n 

The upper bound on logg(n ) /n  is found by noting that 

+(2 log(2-)+ 1 +2/log4). 

Put 

log k,  = 2 log(2-)+ 1 +2/log 4, k,  = 4+8/log 4 

and k ,  = 2/log 4. This is the desired upper bound. 

from proposition 3.l(ii) observe that 
To derive the lower bound we follow a similar argument to that in theorem 3 

s,+,(l, O ) s g ( n +  m)sA1,0)sm(1,O) 

and a find a lower bound by noting that 
m 

log ~ ~ ( 1 ,  o ) / n  zlog p,,o+log g ( n ) / n  - 4  E log g(m)/(m(m+ 1)) 
m = 2 n  
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where 
g(n)=(ol,(d-l)n3+2r'"B"/10841 ~ ' O Z ~ / ' O d 3 / 2 I l  1 

Weseekalowerboundonlogg(n)/n,and anupperhoundonZm=,, log g(m)/(m(m+ 
1)). After a significant amount of algebra, where I note that 2n L 2n - 1 L n, and where 
1 bound the infinite sum by an integral as in theorem 3.4(iii), one gets 

log s.(l,O)r n log pl,o-l0g k4- k5 log n - k6(10g H ) ~ -  k7(log r ~ ) ~ .  

The numbers ki ,  where 4 s i < 7 ,  are positive constants (this is easy but tedious to 
check). 

Remarks. Theorem 3.9(iii) gives bounds on the rate of approach of the limit in theorem 
3.9(ii). These results are only valid for embedded surfaces homeomorphic to a disc 
(or a punctured sphere). Tine eiiects of more boundary components or handies can 
now be considered if we use propositions 3.6 and 3.7 and the unfolding of surfaces. 

Tlreorem 3.10. Let d 2 3 .  Then 
(i) Iimm--sn(h, 9)"" =p,," exists for any h and g, and 
(ii) s.(h, 8 )  < kdh, g)nk2'h.*' exp(kdh, g)(log n)2)PF.o 

and 

s,+i,-,!H+,c(h, 9 )  5 k N k '  exp(-k6(log n ) 2 - k , ( 1 0 g  n)3)Py,0 

where the ki(h, g ) ,  l s i s 3  are positive constants dependent only on h and g, and 
where the constants k; ,  4 s  i s 7  are the constants defined in theorem 3.9(iii). 

ProoJ (i) The proof is by induction. First I show that limn+- ~ ~ ( 1 ,  g)""  =p,,u. By 
propositions i.3(iii), i.4(iij and 3 . i  we note ihat 

s,( 1, g + 1) < 4(d - l)n212i'on "/log '' c ' s.+c(2,g'), 
g'=O 

Similarly, by propositions 2.3(iii), 2.4(ii) and 3.6 we find 

s,( h + 1, g )  s 4(h + 1)( d - l)n2+2r'os n/ '0841  Sn+ih-iic(h. L!), 

But 

Sm(1,O)<Sn+w+gc(h+ 1, S ) .  

Perform an induction now first on g, and then on h. Now for (ii): suppose that 

s. (1 ,g)<k, (h ,g)nk2" ' .Y iexp(k , (h ,s) ( log n)')PY.o 
where k,(h,g) are constants depending only on h and g, for 1 S i S 3 ,  and for all h 
and for all g < g,. Then observe that 

i"P1 E, 

s.(1,gc+1)<n c c s,-;(2,s)s,(LO) ;=, *-0 

(by proposition 3.7). Consequently, 



Thus one can perform an induction on ~ ~ ( 1 ,  g) (with respect to g). Similarly, suppose 
that 

(by proposition 3.6). Thus 

x e x d k d h , ,  g - g ' ) ( l o g ( n - j ) ) * + k , ( l ,  g')(Iogj)2) 

G ( h , + l , g ) =  max (k,(h, ,g ' )xk,( l ,g ' ) ) ,  

Observe that n - j  S n and j S n, and define 

O I g ' I g  

and 

kKh, + 1,s) = max,,,.,,tk,(h,, g')+ k ( 1 ,  g')}. 
Then 

s,( h, + 1, g) S (g + 1) k:( h, + I ,  g)n2+k; 'h,+ ' ," '  exp(kXh,+ 1,g)Uog n)'P;.".  

The upper bound follows then by induction. The lower bound is found by noting that 
sn(I,O)Ss.+,,+,,(h + 1, g) (proposition 2.5(ii) and (iii)). 

Remarks. Consider the number of surfaces with h boundary components, s,(h, *)- 
(=s,(h) in J R W I .  There is ample numerical evidence that s,(h, *) - k,(h, * )n-"*P,  (the 
existence of p ,  is easily shown using the same methods as in theorem 3.9) where it is 
strongly believed that +,a 1 in every dimension (Bovier er a /  1984, Frohlich 1985, 
Glaus 1986, Glaus and Einstein 1987). Proposition 2.5(ii) implies that rb,, 2 4,,+, . If 
one sum both sides of proposition 3.6 over g, then s , ( h + l , * ) G  
n Z]l/o*' s.-,(h, *)sj( 1, *). Substitute the assumption into this expression and observe 
that 4 , *  1. Then we recover (1.4). Several other relations among the exponents were 
derived in JRWI and J R W Z .  It is instructive to derive equation (4.2) in J R W Z  from the 
generalized equations in this paper. I do  that by proving a series of lemmas involving 
inequalities between the exponents, where I assume that s,(h, g)- k,(h, g)n-"".#P,,,  
and $,,,,a 1 in every dimension. 

Lemma3.11. If d a 3 ,  then 4h.o*&I.o-2. 

Boo$ Substitute the assumptions into proposition 3.6, with g=O. This gives 

In141 

j = I  
s.( h + 1,O) < k,( h + I ,  0 ) n  ( n  - j )  -"*.~i-"~'."p;,o( 1 +a( I ) )  
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Observe that 

E J Janse van Rensburg 

( - j ) 2 i h - l l + 4 l g - g ' ) - d , , ~ j 4 ~ ' - ~ , , ~  - n2 ih -~ l+4g-d , ,o  

whence 

Divide this inequality by pC0, take logarithms and divide by log n. Then take n +CO. 

4. Conclusions 

There is much which is not known about surfaces, and many speculations, derived 
mostiy from non-rigorous anaiysis, such as the renormalization group or numerical 
simulations, remain unproven. The constructive methods in this paper revealed some 
interesting facts about s,(h, g) and were slightly more successful in two dimensions 
(than in higher dimensions). Some of the puzzles which remains unproven are: 

(i) Can one prove that c3 = 0 in theorem 3.4, and that k ,  = k6 = k, = 0 in theorem 
3.9? I believe that this is easier in the two-dimensional case. In that case, if c3 = 0, one 
I ~ O L C ~  mat ~..... I ~ ~ .  

h -c,Slim inf (log(s,(h + l,O)/p;,O)/log n )  
n-m 

S l i m s u p ( l o g ( s , ( h + l , O ) / p ~ . , ) / l o g n ) ~ h  
,,-m 

Thus, the correction to the exponential growth of s,(h,O) is dominated at most by a 
power law, and +h,O can be defined as the limsup in the above expression. The same 
arguments can be made in three and higher dimensions about 

(ii) It is known rigorously that p > pl,a in two dimensions (theorem 3.4(iv) and 
JRWI). Can this result be proven in three and higher dimensions? It seems very plausible. 

(iii) Theorem 3.5(ii) states that +,.">O in two dimensions (if it exists). Can this 
be proven in three and higher dimensions? I noted in section 1 that there is ample 
evidence that this is indeed the case in every dimension. Aiso, can t'he exponents in 
three and higher dimensions be related to each otheras in theorem 3.5(i)? The conjecture 
(that + h + l  = +, - h in three and higher dimensions) in J R W I  remains unproven. 

(iv) Closed surfaces (i.e. those in the sets SP,(O,g). where g20)  have resisted all 
attempts at yielding results. Obviously, lim,E-m s,(O, g)"" = exists if g = 0, but what 
if g # O? I can show that Po," < p; this is fairly easy to prove: we must prove a relationship 
iilie proposirion > . A  LO rciarc s,(u, U, anu s,,(n, 01, LUC IC>UIL I O I I O W >  ~iriurcuiarciy. ~ a r r  
one prove that p0.,,<p,,,. (or po,o<p,.o. or p,.o<p)? Paradoxically, one can obtain 
some interesting results if closed surfaces are counted by volume (instead of by surface 
area) (Janse van Rensburg 1990). 

(v)  In J R W ~  we proved relations among several exponents, and conjectured many 
more, involving the knots in the boundary components. Can one prove any of these?. 
The re-arks z a d e  In JR-.:': app!y. 

q:,.. - ~~ ~--:.:.~. 7 II L. .-,... I n  n, ..-.I ~ ,l .LA I. P.9, : - - -A:- . . , . .  P-.. 
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